SCHLÄFLI, L. (1950). Gesammelte Mathematische Abhandlungen. Vol. 1, p. 215. Basel: Verlag Birkhäuser.
Shoemaker, C. B. \& Shoemaker, D. P. (1963). Acta Cryst. 16, 997-1009.
Shoemaker, C. B. \& Shoemaker, D. P. (1964). Trans. Am. Inst. Min. Metall. Pet. Eng. 230, 486-490.
Shoemaker, C. B. \& Shoemaker, D. P. (1967). Acta Cryst. 23, 231-238.
Shoemaker, C. B. \& Shoemaker, D. P. (1969). Developments in the Structural Chemistry of Alloy Phases, edited by B. C. Giessen, pp. 107-139. New York: Plenum.
Shoemaker, C. B. \& Shoemaker, D. P. (1971a). Monatsh. Chem. 102, 1643-1666.
Shoemaker, C. B. \& Shoemaker, D. P. (1971b). Acta Cryst. B27, 227-235.
Shoemaker, C. B. \& Shoemaker, D. P. (1972). Acta Cryst. B28, 2957-2965.
Shoemaker, C. B. \& Shoemaker, D. P. (1976). Acta Cryst. B32, 2306-2313.
Shoemaker, C. B. \& Shoemaker, D. P. (1977). Acta Cryst. B33, 743-754.

Shoemaker, C. B. \& Shoemaker, D. P. (1981). Acta Cryst. B37, 1-8.
Shoemaker, D. P. \& Shoemaker, C. B. (1968). Structural Chemistry and Molecular Biology, edited by A. Rich \& N. Davidson, pp. 718-730. San Francisco: Freeman.
Shoemaker, D. P., Shoemaker, C. B. \& Wilson, F. C. (1957). Acta Cryst. 10, 1-14.
Simon, A., Brämer, W., Hillenkötter, B. \& Kullmann, H. J. (1976). Z. Anorg. Allg. Chem. 419, 253-274.

Wilson, C. G., Thomas, D. K. \& Spooner, F. J. (1960). Acta Cryst. 13, 56-57.
Yarmolyuk, Ya. P. \& Kripyakevich, P. I. (1974). Kristallografiya, 19, 539-545; Sov. Phys. Crystallogr. 19, 334-337.
Yarmolyuk, Ya. P., Kripyakevich, P. I. \& Gladyshevskil, E. I. (1970). Kristallografiya, 15, 268-274; Sov. Phys. Crystallogr. 15, 226-230.
Yarmolyuk, Ya. P., Kripyakevich, P. I. \& Melnik, E. V. (1975). Kristallografiya, 20, 538-542.

Ye, H. Q., Li, D. X. \& Kuo, K. H. (1984). Acta Cryst. B40, 461465.

Acta Cryst. (1986). B42, 11-16

Phase Transitions in RbLiSO_{4}

By W. Steurer, H. Wittmann and H. Jagodzinski
Institut für Kristallographie und Mineralogie der Universität, Theresienstrasse 41, D-8000 München 2, Federal Republic of Germany

and A. Pietraszioo

Institute of Low Temperatures and Structure Research of the Polish Academy of Sciences, POB 937, 50-950 Wrocław, Poland
(Received 29 October 1984; accepted 3 September 1985)

Abstract

The structure of the commensurate modulated phase (IV) of RbLiSO_{4} (RLS) was determined by singlecrystal X-ray diffractometry at $446 \mathrm{~K} . M_{r}=188.5$, monoclinic, $P 11 n, a=9 \cdot 157$ (1), $b=5.316$ (1), $c=$ $43 \cdot 654$ (3) $\AA, \quad \gamma=89.97(1)^{\circ}, \quad U=2125 \AA^{3}, \quad Z=20$, $D_{x}=2.95 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mathrm{Cu} \mathrm{K} \alpha, \quad \lambda=1.5418 \AA, \quad \mu=$ $19.94 \mathrm{~mm}^{-1}, F(000)=1760, R=0.091, w R=0.045$ for 2191 independent reflexions (including 329 unobserved reflexions). The fivefold superstructure in the c direction is mainly caused by a rotation of the sulfate tetrahedra around \mathbf{c}. In order to show the structural changes connected with the phase transitions difference Fourier maps and probability density functions (p.d.f.'s) of phases (I) (485 K , re-refined with anharmonic temperature factors), (III) (465 K) and (IV) were calculated and all existing orientation states of the SO_{4} groups obtained. Models of the phase transitions are discussed from a structural point of view.

0108-7681/86/010011-06\$01.50

Introduction

In recent years the compounds $M \mathrm{LiSO}_{4}\left(M=\mathrm{NH}_{4}\right.$, Rb, Cs) have been the subject of many studies. Similar to such other $A_{2} B X_{4}$-type crystals as $\mathrm{K}_{2} \mathrm{SeO}_{4}$ (Iizumi, Axe, Shirane \& Shimaoka, 1977) or $\mathrm{Rb}_{2} \mathrm{ZnBr}_{4}$ (Gesi \& Iizumi, 1978), these substances undergo incom-mensurate-commensurate phase transitions and have ferroelectric and ferroelastic phases, respectively. Hahn, Lohre \& Chung (1969) showed that these pseudohexagonal structures can be derived from a new type of tetrahedral framework with symmetry Icmm. Investigations on the system $\mathrm{NH}_{4} \mathrm{LiSO}_{4}$ (ALS) by Dollase (1969), Hildmann (1980) and Itoh, Ishikura \& Nakamura (1981) exhibited the transitions:
phase (I) (Pcmn)
$\xrightarrow{460 \mathrm{~K}}$ phase (II) (ferroelectric, $P c 2{ }_{1} n$)
$\xrightarrow{283 \mathrm{~K}}$ phase (III) (ferroelastic, $P 12_{1} / c 1$).
(C) 1986 International Union of Crystallography

Kruglik, Simonov, Zhelezin \& Belov (1979), Tomaszewski, Pietraszko \& Łukaszewicz (1981) and Hildmann, Hahn, Heger \& Guth (1983) found the transitions:

```
phase (I) (Pcmn)
```

```
\(\xrightarrow{219 \mathrm{~K}}\) phase (II) (?)
```

$\xrightarrow{219 \mathrm{~K}}$ phase (II) (?)
$\xrightarrow{196 \mathrm{~K}}$
$\xrightarrow{196 \mathrm{~K}}$
phase (III) (ferroelastic, $P 112_{1} / n$)

```
        phase (III) (ferroelastic, \(P 112_{1} / n\) )
```

for CsLiSO_{4} (CLS). X-ray studies on the phase transitions in RLS were performed by Mashiyama, Hasebe, Tanisaki, Shiroishi \& Sawada (1979). The structure of the room-temperature phase (V) was determined by Kruglik, Misyl \& Simonov (1979) and by Tanisaki, Mashiyama, Hasebe, Shiroishi \& Sawada (1980). Frey, Jagodzinski, Pietraszko \& Zeyen (1983) investigated the diffuse scattering and the transitions in the region of phase (I) to (III) by neutron scattering. The structures of phases (I) and (III) were solved by Pietraszko \& Jagodzinski (1984). The results of these works are shown in Table 1.
The aim of the present work was to determine the unknown structure of phase (IV) and to discuss the structural changes on going from phase (I) to phase (V), in order to obtain a better insight into the mechanism of the phase transitions.

Experimental and structure refinements

Phase (IV)

The preparation of the spherical crystal (diameter 0.24 mm) was as described by Pietraszko \& Jagodzinski (1984). Data collection: Enraf-Nonius CAD-4 four-circle diffractometer, graphitemonochromated $\mathrm{Cu} K \alpha$ radiation; lattice parameters from least-squares refinement of 25 high-angle reflexions; $\omega / 2 \theta$ scans. A hot-air heating device was used; the absolute temperature was calibrated on the phase transition at 439 K ; the relative temperature deviations at the site of the crystal were $< \pm 1 \mathrm{~K}$. A spherical-absorption correction ($\mu R=2 \cdot 25$), and Lorentz and polarization corrections were applied in the usual way. The two data sets measured (A: 980 fundamental reflexions, $-10 \leq h \leq 10,0 \leq k \leq 6,0 \leq$ $l \leq 50 ; B: 1691$ fundamental and satellite reflexions $-6 \leq h \leq 6,0 \leq k \leq 4,0 \leq l \leq 35)\left(2 \theta_{\max }=70^{\circ}\right)$ were merged using common reflexions and the linear leastsquares method for deriving batch scale factors. Three orientation-control reflexions were measured every 30 collected intensities. One intensity-control reflexion was measured every 60 min , maximum deviation $\pm 0 \cdot 8 \%$. After averaging, 2195 [including 329 unobserved ($\left.I_{\text {obs }} \leq 0\right)$] independent reflexions remained ($R_{\text {int }}=0.017$). The systematic absences $h k 0$: $h+k=2 n+1$ suggest space group P11n (Mashiyama et al., 1979). The occurrence of relatively strong satel-

Table 1. Regions of existence, space groups and multiples of the subcell for the modulated structures of RLS (Mashiyama et al., 1979)

Phase (I)	$477<T \mathrm{~K}$	$P c m n$	c_{0}	Disordered
Phase (II)	$475<T<477 \mathrm{~K}$	$?$	$\approx 5 c_{0}$	Incommensurate
Phase (III)	$458<T<475 \mathrm{~K}$	$P 12_{1} / c 1$	$2 c_{0}$	Antiferroelectric
Phase (IV)	$439<T<458 \mathrm{~K}$	$P 11 n$	$5 c_{0}$	Ferroelectric
Phase (V)	$T<439 \mathrm{~K}$	$P 112_{1} / n$	c_{0}	

lites of uneven order is an indication for a rectangular modulation wave. The refinements of the average structure were carried out in space group $P 112_{1} / n$ because high correlations were observed between parameters connected by the pseudosymmetry element 2_{1} (the reflexions with $00 l: l=2 n+1$ are absent or very weak) when refining in space group P11n. The R factors did not differ significantly.

The positional parameters obtained by Pietraszko \& Jagodzinski (1984) for phase (V) at 422 K were used as starting values ($R=0.068, w R=0.070$). Strikingly high temperature factors were calculated for the O atoms $\left[\mathrm{O}(1): U_{11}=0.132(9) ; \mathrm{O}(2): U_{11}=0.24(2)\right.$; $\left.\mathrm{O}(3): U_{11}=0.21(1) ; \mathrm{O}(4): U_{22}=0.37(3) \AA^{2}\right]$ and the difference Fourier maps showed double-peaked contours. Refinements with split O atoms yielded $R=$ $0.049, w R=0.051$ and after omission of the reflexions $020,330, \overline{3} 30$ and 040 , presumably strongly affected by extinction, the final $R=0.046, w R=0.044$ (96 parameters, 799 observed reflexions).

The refinements of the superstructure started with the average parameters. In order to bring the number of variables to a reasonable relation to the number of observations (70 independent atoms with 630 atomic parameters) and to avoid strong correlations between the equivalent atoms of different subcells, some parameters had to be constrained or fixed. The x, y, z coordinates of Li , the x and z of Rb and the z of the S and $\mathrm{O}(1)$ were fixed to average values because the $U_{i j}$ values of these atoms behaved quite normally in the average structure. In addition, $\mathrm{O}(i)-$ $\mathrm{O}(j)$ bond-length constraints were applied. The O tetrahedra of all subcells were forced to adopt the same size with an error of $0.01 \AA$ in the refinements. This increases the number of variables (one for each edge of the tetrahedron) by 6 . The anisotropic temperature factors of the atoms in the subcells with an equivalent orientation of the SO_{4} group were set to the same value in the refinements.

The final $R=0.069, w R=0.045$ (overall, 208 variables, 1862 observed reflexions), $R=0.091$ (including unobserved reflexions), and $R=0.25, w R=0.082$ (973 satellite reflexions only) were obtained. $(\Delta / \sigma)_{\max }=0.61$. A refinement using the superstructure reflexions only yielded $R=0.21, w R=0.056$ with no principal changes of the atomic parameters. The rather high unweighted satellite R factor may be due to the temperature instability during the data collection and not well separated diffuse scattering. These
factors influence the large number of weak reflexions most. All calculations had to be performed with a damping factor to prevent oscillation around the R factor minimum.

Phase (I)

The data set collected by Pietraszko \& Jagodzinski (1984) was used for the calculations. The refinements were performed on an ordered model with harmonic ($R=0.046, w R=0.049,41$ variables, 453 reflexions) and anharmonic temperature factors ($R=0.024$, $w R=0 \cdot 026,77$ variables, up to fourth-rank tensors used). The disordered model, with split O atoms, gave $R=0.030, w R=0.031$ for 56 variables. In order to reduce the number of variables for the refinements with anharmonic temperature factors all temperature coefficients with values smaller than their e.s.d.'s were set to zero and fixed (77 instead of 108 variables). A refinement with all possible variables yielded the same R factors. Difference Fourier and p.d.f. maps were calculated.

The data reduction was performed with the Structure Determination Package of Enraf-Nonius (Frenz, 1978), and merging and averaging and the structure refinements (on F) with the program SHELX76 (Sheldrick, 1976) on a Cyber 175 computer. The refinements of anharmonic temperature factors and the calculation of the p.d.f. maps were carried out with the program PROMETHEUS (Zucker, Perenthaler, Kuhs, Bachmann \& Schulz, 1983). Atomic scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974). Weights assigned to the reflexions: $w=1 / \sigma^{2}\left(F_{o}\right)$.

Phase (IV)

The final atomic parameters are listed in Table 2.* The ordering of the SO_{4} groups is displayed in Fig. 1. The modulation can be described schematically by a rectangular wave (see Fig. 2). If a right(left)-hand rotation of the tetrahedra around \mathbf{c} is denoted by $+(-)$ then the ordering in the $\mathrm{O}(i)$ layers succeeding one another can be described by ++-++--+-[phase (I): $\pm \pm$; phase (III): ++--; phase (V): +(Pietraszko \& Jagodzinski, 1984)]. This sequence (or the alternative one --+--++-++) can also be derived by theoretical considerations: the three tetrahedra of one $\mathrm{O}(i)$ layer around one Rb atom

[^0]Table 2. Fractional atomic coordinates and temperature factors $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses for the superstructure and the average structure (labelled 'ave') of phase (IV) of RLS

	x	y	2	$U_{\text {eq }} / U_{\text {iso }}{ }^{*}$
$\mathrm{Rb}(1)$	0.2833	0.2488	0.0005	0.0382
Rb (2)		0.229 (2)	0.2005	
$\mathrm{Rb}(3)$		$0 \cdot 250$ (2)	0.4005	
$\mathrm{Rb}(4)$		0.236 (2)	0.6005	
$\mathrm{Rb}(5)$		$0 \cdot 232$ (2)	0.8005	
$\mathrm{Rb}(1 A)$	0.7167	0.732 (2)	0.9995	
$\mathrm{Rb}(2 A)$		0.749 (2)	0.7995	
$\mathrm{Rb}(3 A)$		0.742 (2)	0.5995	
$\mathbf{R b}(4 A)$		0.736 (2)	0.3995	
$\mathrm{Rb}(5 A)$		0.748 (2)	0.1995	
Rb ave	0.2833 (1)	0.2488 (1)	0.0025 (1)	0.0392
Li(1)	0.416	0.748	0.066	0.036 (2)
Li(2)			0.266	
Li(3)			0.466	
Li(4)			0.666	
$\mathrm{Li}(5)$			0.866	
$\mathrm{Li}(1 A)$	$0 \cdot 584$	$0 \cdot 252$	0.934	
$\mathrm{Li}(2 A)$			0.734	
$\mathrm{Li}(3 A)$			0.534	
$\mathrm{Li}(4 A)$			0.334	
$\mathrm{Li}(5 A)$			0.134	
$\mathrm{Li}_{\text {ave }}$	$0 \cdot 416$ (2)	0.748 (4)	0.328 (2)	0.043
S(1)	0.084 (2)	0.735 (3)	0.0412	0.0212
S(2)	0.077 (2)	0.734 (2)	0.2412	
S(3)	0.077 (2)	0.733 (3)	0.4412	
S(4)	0.077 (2)	0.756 (3)	0.6412	
S(5)	0.080 (2)	0.750 (3)	0.8412	
$\mathrm{S}(1 A)$	0.918 (2)	0.246 (3)	0.9588	
$\mathrm{S}(2 A)$	0.914 (2)	0.233 (3)	0.7588	
$\mathrm{S}(3 A)$	0.914 (2)	0.243 (3)	0.5588	
$\mathrm{S}(4 A)$	0.910 (2)	0.240 (3)	$0 \cdot 3588$	
$\mathrm{S}(5 A)$	0.913 (2)	0.243 (3)	0.1588	
$S_{\text {ave }}$	0.0825 (2)	0.7503 (5)	0.2059 (3)	0.0220
$\mathrm{O}(11)$	$0 \cdot 109$ (3)	0.750 (4)	0.0082	0.050
$\mathrm{O}(12)$	0.094 (3)	0.750 (4)	0.2082	0.063
$\mathrm{O}(13)$	0.107 (3)	0.753 (4)	0.4082	0.050
$\mathrm{O}(14)$	0.092 (3)	0.741 (4)	0.6082	0.063
$\mathrm{O}(15)$	0.100 (3)	0.741 (4)	$0 \cdot 8082$	0.063
$\mathrm{O}(11 A)$	0.927 (3)	0.232 (4)	0.9918	0.050
$\mathrm{O}(12 \mathrm{~A})$	0.913 (3)	0.249 (4)	0.7918	0.063
$\mathrm{O}(13 A)$	0.935 (3)	0.262 (4)	0.5918	0.050
$\mathrm{O}(14 A)$	0.907 (3)	0.241 (4)	$0 \cdot 3918$	0.063
$\mathrm{O}(15 A)$	0.913 (3)	0.256 (4)	0.1918	0.063
$\mathrm{O}(1)$ ave	0.091 (1)	0.750 (2)	0.0409 (9)	0.070
$\mathrm{O}(21)$	0.048 (2)	0.996 (2)	0.0515 (4)	0.037
$\mathrm{O}(22)$	0.951 (2)	0.911 (3)	0.2489 (6)	0.049
$\mathrm{O}(23)$	0.050 (2)	0.999 (2)	0.4518 (6)	0.037
$\mathrm{O}(24)$	0.949 (2)	0.925 (3)	0.6475 (6)	0.049
$\mathrm{O}(25)$	0.952 (2)	0.909 (3)	0.8477 (6)	0.049
$O(21 A)$	0.947 (2)	0.007 (2)	0.9453 (4)	0.037
$\mathrm{O}(22 A)$	0.023 (2)	0.071 (3)	0.7478 (5)	0.049
$\mathrm{O}(23 A)$	0.952 (2)	0.009 (2)	0.5474 (4)	0.037
$\mathrm{O}(24 A)$	0.017 (2)	0.068 (3)	0.3475 (5)	0.049
O(25A)	0.011 (2)	0.057 (3)	0.1479 (5)	0.049
$O(2)$ ave	0.999 (2)	0.951 (2)	0.257 (1)	0.129
$\mathrm{O}(31)$	0.965 (2)	0.572 (3)	0.0481 (6)	0.041
O(32)	0.043 (2)	0.492 (2)	$0 \cdot 2514$ (5)	0.043
O(33)	0.958 (2)	0.581 (3)	0.4476 (5)	0.041
O(34)	0.032 (2)	0.501 (2)	0.6524 (4)	0.043
$\mathrm{O}(35)$	0.043 (2)	0.490 (2)	0.8516 (4)	0.043
$\mathrm{O}(31 \mathrm{~A})$	0.037 (2)	0.427 (3)	0.9485 (5)	0.041
$\mathrm{O}(32 \mathrm{~A})$	0.945 (2)	0.499 (2)	0.7472 (4)	0.043
$\mathrm{O}(33 A)$	0.009 (2)	0.446 (3)	0.5446 (4)	0.041
$\mathrm{O}(34 \mathrm{~A})$	0.931 (2)	0.491 (2)	0.3470 (4)	0.043
$\mathrm{O}(35 \mathrm{~A})$	0.935 (2)	0.485 (2)	0.1453 (4)	0.043
$O(3)_{\text {ave }}$	0.025 (2)	0.524 (2)	0.261 (1)	0.116
$\mathrm{O}(41)$	0.217 (2)	0.661 (3)	0.0563 (4)	0.048
$\mathrm{O}(42)$	0.205 (2)	0.843 (3)	0.2558 (5)	0.055
$\mathrm{O}(43)$	0.211 (2)	0.652 (3)	0.4563 (4)	0.048
$\mathrm{O}(44)$	0.201 (2)	0.843 (3)	$0 \cdot 6558$ (5)	0.055
$\mathrm{O}(45)$	0.205 (2)	0.839 (3)	$0 \cdot 8563$ (4)	0.055
$\mathrm{O}(41 \mathrm{~A})$	0.781 (2)	0.349 (3)	0.9494 (5)	0.048
$\mathrm{O}(42 A)$	0.770 (2)	$0 \cdot 167$ (3)	0.7478 (5)	0.055
$\mathrm{O}(43 A)$	0.763 (2)	$0 \cdot 312$ (3)	0.5519 (6)	0.048
$\mathrm{O}(44 A)$	0.763 (2)	$0 \cdot 150$ (3)	$0 \cdot 3484$ (5)	0.055
$\mathrm{O}(45 A)$	0.759 (2)	0.156 (3)	$0 \cdot 1500$ (6)	0.055
$\mathrm{O}(4)$ ave	$0 \cdot 222$ (1)	0.779 (4)	$0 \cdot 268$ (1)	0.162

[^1]Table 3. Ranges and means of interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for the ten independently refined SO_{4} and LiO_{4} tetrahedra

	Range	Mean
$\mathrm{S}-\mathrm{O}(1)$	1.44-1.47	1.45 (1)
S-O(2)	1.39-1.53	1.46 (5)
S-O(3)	1.39-1.53	1.47 (5)
$\mathrm{S}-\mathrm{O}(4)$	1.38-1.53	1.45 (4)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(1)$	105-113	109 (3)
$\mathrm{O}(3)-\mathrm{S}-\mathrm{O}(1)$	106-113	109 (3)
$\mathrm{O}(3)-\mathrm{S}-\mathrm{O}(2)$	106-114	109 (2)
$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(1)$	105-114	109 (3)
$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(2)$	105-113	110 (3)
$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(3)$	106-114	110 (3)
Li - $\mathrm{O}(1)$	1.82-2.08	1.9 (1)
$\mathrm{Li}-\mathrm{O}(2)$	1.86-1.99	1.91 (5)
Li-O(3)	1.88-2.05	1.93 (6)
Li-O(4)	1.86-2.16	2.0 (1)
Shortest distances		
$\mathrm{Rb}-\mathrm{O}$	2.78-2.93	2.87 (5)
Constrained bond lengths		
$\mathrm{O}(1)-\mathrm{O}(2)$		2.37(1)
$\mathrm{O}(1)-\mathrm{O}(3)$		$2 \cdot 38$ (1)
$\mathrm{O}(1)-\mathrm{O}(4)$		$2 \cdot 37$ (1)
$\mathrm{O}(2)-\mathrm{O}(3)$		$2 \cdot 38$ (1)
$\mathrm{O}(2)-\mathrm{O}(4)$		$2 \cdot 37$ (1)
$\mathrm{O}(3)-\mathrm{O}(4)$		$2 \cdot 38$ (1)

The six edges $\mathrm{O}(i)-\mathrm{O}(j)$ of the SO_{4} tetrahedra were constrained, i.e. all equivalent distances of the ten SO_{4} tetrahedra were set to the same value within an error of $0.01 \AA$.
have to be rotated in the same sense for sterical reasons. This is true for all $\mathrm{O}(i)$ layers and it follows that the three tetrahedra stacks have the same modulation waves with the same phases. Because of the

Fig. 1. Ordering of the SO_{4} groups in phase (IV) of RLS (viewed along \mathbf{c}).

Fig. 2. The rectangular modulation wave ($\mathbf{q}=0.4 \mathbf{c}^{*}$) acting on $O(4)$.
n-glide plane (converting \mathbf{q} to $-\mathbf{q}$) only a special value for the phase is possible (for a sine function: $\pi / 2$).

The Rb atoms show slight shifts parallel to \mathbf{b} only. Table 3 gives the ranges and means of the interatomic distances. The difference Fourier synthesis exhibits maxima in the alternative orientation states of the tetrahedra (about $0.5 \mathrm{e} \AA^{-3}$). This indicates the existence of a small amount of domains with the alternative orientation of the SO_{4} groups and explains the unusually high anisotropic temperature-factor components of some atoms [$\mathrm{O}(1): U_{11}=0 \cdot 124$ (4); $\mathrm{O}(4)$: $\left.U_{22}=0.073(3), U_{33}=0.076(3) \AA^{2}\right]$.

Phases (I), (III) and (V)
Fig. 3 shows the difference Fourier maps for the regions around $O(4)$ for all phases and Fig. 4 the p.d.f. maps of the O atoms of phase (I). In Table 4 (deposited) the results of a thermal-motion analysis (Schomaker \& Trueblood, 1968), calculated with the program XANADU (Roberts \& Sheldrick, 1976), are reported for the ordered harmonic model showing a second libration around $\mathbf{b}\left(14 \cdot 2^{\circ}\right)$ in addition to the main one around $\mathbf{c}\left(21 \cdot 1^{\circ}\right)$. The values for phase (V) at 422 K are 10.6 and $6 \cdot 9^{\circ}$.

Discussion of the structural relationships between the phases of RLS

The possible orientation states of the SO_{4} tetrahedra in the different phases of RLS can be derived by analysing the p.d.f. maps (Fig. 4) and the results of the split-atom calculations. The trajectory of an $\mathrm{O}(4)$ atom, changing from the + to the - position, is an ellipse as can be expected for sterical reasons. The $O(1)$ atom, performing a displacement in the $x z$ plane at the same time, may be mainly responsible for the correlation of the rotation of the tetrahedra of neighbouring layers. The p.d.f. indicates that a high proportion of SO_{4} groups are in intermediate positions. Even at lower temperatures, peaks can be found in the difference Fourier maps at the alternative and intermediate orientations (Fig. 3). Of course, nothing can be said from our experiment about the dynamic or static character of these findings.

Broad maxima on the diffuse streaks parallel to \mathbf{c}^{*}, precursor effects of the second-order phase transition, are observable in phase (I) at the sites of the satellite reflexions of phase (II) up to at least 510 K (Frey et al., 1983). This means that small regions with the symmetry of the modulated phase (II) are coexisting with statistically distributed domains of local symmetry $P 112_{1} / n$ [the + and - orientation of the lowtemperature phase (V) and all general intermediate positions] and Pcmn [special position with $\mathrm{O}(1)$ and $\mathrm{O}(4)$ on the reflexion plane]. Therefore the structure of phase (I) (at 485 K) will not be very different from the average structure of phase (II) and a model for
the modulated structure can be derived. The (3+ 1)-dimensional Bravais class (de Wolff, Janssen \& Janner, 1982) $P^{P m m}{ }_{1}^{m} \frac{m}{1}(00 \gamma)$ and the superspace groups $P^{P c m}{ }_{11}^{1} \frac{n}{1}(00 \gamma)$ or $P^{P c m}{ }_{1 s} \frac{n}{1}(00 \gamma)$ come into question. A modulation with displacements of the $O(4)$ atoms in the reflexion plane would be consistent with the first superspace group and with shifts perpendicular to it with the second one. A rotational modulation, moving the $O(4)$ atom on an ellipse, would be forbidden by symmetry. Owing to the maxima of the p.d.f. and the structure of the locked-in phase (III) the superspace group $P_{1 s \frac{1}{1}(0)}^{\operatorname{cm}_{1} \frac{n}{1}}(00 \gamma)$ is more probable. Consequently, the modulation should be very similar to that of phase (IV) [which has the pseudosymmetry $\left.P^{P c m} \begin{array}{c}m \\ 1 s \\ 1\end{array}(00 \gamma)\right]$ and the same phase relationships should hold. Then the incommensurate wave can be described by a structure of + , - microdomains with fluctuating size (see, for example, Böhm, 1983). The statistical character of the incommensurate wave will be expressed in high phase fluctuations which are not present in the commensurate case of phase (IV). Starting from a distribution like $+++/--/++/$
$---/ .$. with a wavelength of about $2 \cdot 5 c$ a locked-in transition occurs with $\lambda=2 c$ leading to the structure of phase (III) $++/--/++/--/ \ldots$.

The ordered phases show two characteristic coordination polyhedra A and P for the Rb atoms. The sequence +- (or -+) forms a trigonal antiprism A and $++($ or --$)$ a trigonal prism P as coordination polyhedron using the atoms $\mathrm{O}(2, i), \mathrm{O}(3, i), \mathrm{O}(4, i)$ and $\mathrm{O}(2, j), \mathrm{O}(3, j), \mathrm{O}(4, j)(i, j$ denote different layers of SO_{4} groups) (see Fig. 1). There are, additionally, three $O(1, i)$ atoms at about the same distances outside of the prisms. An ordered phase (I) would exhibit large hexagonal prisms as coordination polyhedra which could be stable for large cations only. Consequently, the tetrahedra are rotated around c to obtain a better coordination of the Rb atom. The smaller the cation the higher is the temperature at which the ordering starts. This can be seen by a comparison of the ranges of existence of the disordered phases of ALS ($T>460 \mathrm{~K}$), RLS ($T>$ 477 K) and CLS ($T>219 \mathrm{~K}$) with the size of the cations $\quad\left(r_{\mathrm{NH}_{4}+}=1.43, \quad r_{\mathrm{Rb}^{+}}=1.48, \quad r_{\mathrm{Cs}^{+}}=1.69 \AA\right)$.

Fig. 3. Difference Fourier maps ($\times 10^{-2} \mathrm{e} \AA^{-3}$) of (a) the two-atom split model, (b) the anharmonic model of phase (I), and the split model of the average structures of (c) phase (III) and (d) phase (IV) of RLS. The section with maximal residual density around $\mathrm{O}(4)$, corresponding to the plane defined by the split atoms, was chosen.

(a)

(b)

(c)

Fig. 4. P.d.f. maps $\left(\AA^{-3}\right)$ of the O atoms of phase (I) of RLS. (a) $O(1),(b) O(2)$ and (c) $O(4)$. The section with maximal density, corresponding to the planes defined by the split atoms, was chosen.

A stepwise substitution of Rb by Cs results in an increase of the stability range of the disordered phase and in a reduction of the number of possible phases (Tomaszewski et al., 1981). The fraction of A polyhedra increases with decreasing temperature from 50% [phase (III)], over 60% [phase (IV)] to 100% [phase (V)]. These different distributions may contribute to the stabilization of the intermediate phases.

This work is a contribution to the understanding of the variety of phases of RLS by an analysis of the structural relationships between them. Many questions remain open for future work, especially the reason for the formation of the two- and fivefold superstructures and the character of the phase transitons (I)-(II)-(III).

References

Вӧнм, H. (1983). Am. Mineral. 68, 11-17.
Dollase, W. A. (1969). Acta Cryst. B25, 2298-2302.
Frenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.

Frey, F., Jagodzinski, H., Pietraszko, A. \& Zeyen, C. (1983). Solid State Commun. 46, 557-560.

Gesi, K. \& Iizumı, M. (1978). J. Phys. Soc. Jpn, 45, 1777-1778.
Hahn, T., Lohre, G. \& Chung, S. J. (1969). Naturwissenschaften, 56, 459.
Hildmann, B. O. (1980). Thesis, RWTH Aachen.
Hildmann, B. O., Hahn, T., Heger, G. \& Guth, H. (1983). Z. Kristallogr. 162, 101-103.

Iizumi, M., Axe, J. D., Shirane, G. \& Shimaoka, K. (1977). Phys. Rev. B, 15, 4392-4411.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Itoh, K., Ishikura, H. \& Nakamura, E. (1981). Acta Cryst. B37, 664-666.
Kruglik, A. I., Misyl, S. M. \& Simonov, M. A. (1979). Kristallografiya, 24, 582-585.
Kruglik, A. I., Simonov, M. A., Zhelezin, E. P. \& Belov, N. V. (1979). Dokl. Akad. Nauk SSSR, 247, 1384.

Mashiyama, H., Hasebe, K., Tanisaki, S., Shiroishi, Y. \& Sawada, S. (1979). J. Phys. Soc. Jpn, 47, 1198-1204.
Pietraszko, A. \& Jagodzinski, H. (1984). Phase Transitions. Submitted.
Roberts, P. \& Sheldrick, G. M. (1976). XANADU. Univ. of Cambridge, England.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1976). SHELX76. A program .or crystal structure determination. Univ. of Cambridge, England.
Tanisaki, S., Mashiyama, H., Hasebe, K., Shiroishi, Y. \& Sawada, S. (1980). Acta Cryst. B36, 3084-3085.
Tomaszewski, P. E., Pietraszko, A. \& Łukaszewicz, K. (1981.) Acta Cryst. A37, C109.

Wolff, P. M. de, Janssen, T. \& Janner, A. (1982). Acta Cryst. A37, 625-636.
Zucker, U. H., Perenthaler, E., Kuhs, W. F., Bachmann, R. \& Schulz, H. (1983). J. Appl. Cryst. 16, 358.

[^0]: * Lists of structure factors, anisotropic thermal parameters and results of thermal-motion analyses have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42458 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: ${ }^{*} U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right) ; U_{\text {iso }}$ is the isotropic temperature factor for Li .

